154056 nm) over the range of 20° ~ 90° (2θ scale) A tenfold AuNP

154056 nm) over the range of 20° ~ 90° (2θ scale). A tenfold AuNP concentrate was processed under an N2 atmosphere to assess the activated partial thromboplastin time (aPTT) using a procedure adapted from our previous report [17]. Results and discussion Green synthesis and yield of EW-AuNPs As depicted in Figure 1A, the wine-red color of the EW-AuNPs after incubation in an oven confirmed the successful synthesis of the AuNPs. The surface plasmon resonance band of AuNPs was observed at 533 nm. ICP-MS is an excellent detection tool for measuring the concentration of unreacted Au3+ at the ppt level. The concentration of the EW-AuNPs solution was measured by ICP-MS

as 95,192.2 parts per billion (ppb) which was the initial Au3+

concentration used for the synthesis. The concentrations of the unreacted Au3+ were measured by ICP-MS as 8,455.6 VX-680 clinical trial and 7,151.1 ppb with the ultracentrifugation and filtration methods, respectively. Thus, the ultracentrifugation method TSA HDAC obtained a yield of 91.1%, and the filtration method obtained a yield of 92.5%. The characteristic wine-red color of the EW-AuNPs check details disappeared after ultracentrifugation or filtration, indicating that the AuNPs were successfully separated from the unreacted Au3+. Figure 1 UV-visible spectra, XRD analysis, and FT-IR spectra of EW-AuNPs. (A) UV-visible spectra before and after the oven incubation. The inset depicts the color change of the AuNP solution. (B) XRD analysis of the EW-AuNPs. (C) FT-IR the spectra of the EW and EW-AuNPs. XRD analysis The crystalline nature of the EW-AuNPs was determined via XRD analysis, as shown in Figure 1B. The diffraction peaks at 38.3°, 44.7°, 64.7°, and 77.4° corresponded to the (111), (200), (220), and (311) planes of crystalline Au, respectively, indicating a face-centered cubic structure. FT-IR spectra As shown in Figure 1C, in the earthworm sample, the O-H stretching vibration appeared at 3,414 cm−1 as

an intense and broad band. The two bands at 2,919 and 2,850 cm−1 were identified as the methylene vibrations of the hydrocarbons from the proteins/peptides [18]. The carbonyl (C = O) stretching vibration at 1,658 cm−1 from the amide functional groups also indicated the presence of proteins/peptides [18, 19]. The band at 1,587 cm−1 resulted from the N-H bending vibration of the amide functional groups. The COO– stretching vibration appeared at 1,412 cm−1. The bands from the earthworm sample suggested that proteins/peptides were the major compounds present in the sample. After synthesis of the EW-AuNPs, these bands shifted from 3,414 to 3,440 cm−1, from 2,919 to 2,914 cm−1, from 2,850 to 2,854 cm−1, from 1,658 to 1,637 cm−1, and from 1,412 to 1,406 cm−1. Based on these shifts, the proteins/peptides in the extract are likely responsible for the reduction of Au3+ to generate the AuNPs.

Comments are closed.