2.1.1), glucoamylases (EC 3.2.1.3) and pullulanases (EC 3.2.1.41) significantly (p < 0.05) increased at eCO2. Among 68 detected amyA probes, 44 were shared by both CO2 conditions. For those shared genes, six {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| gene variants showed strongly increasing trends with four genes (84691156 from Parvularcula bermudensis HTCC2503, 113897923 from Herpetosiphon aurantiacus ATCC 23779, 72161237 from Thermobifida fusca YX, and 114197670 from Aspergillus terreus NIH2624) at p < 0.05 level
and two genes (83643106 from Hahella chejuensis KCTC 2396 and 94984767 from Deinococcus geothermalis DSM 11300) at p < 0.10 level, and one gene variant (146337645 from Bradyrhizobium sp. ORS278) showed significant decrease at p < 0.05 level at eCO2 (Figure 3). Within NVP-BSK805 the 24 unique amyA genes, 11 were detected
at aCO2 and 13 were detected at eCO2, and they FG-4592 supplier contributed approximately 8.6% (3.4% for aCO2 and 5.2% for eCO2) of the total amyA signal intensity. The significant increase genes, 84691156 (from Parvularcula bermudensis HTCC2503) and 113897923 (from Herpetosiphon aurantiacus ATCC 23779), also ranked as the first and second abundant amyA genes with 13.2% and 7.7% of the total amyA gene signal, respectively (Figure 3). These results suggested that starch degradation by microorganisms in soil may increase at eCO2. Similar
trends about the gene variants and dominant populations were observed in glucoamylase (Additional file 6) and pullulanase (Additional file 7). Details for these two gene families are described in Additional file 5. Figure 3 The top ten abundant and other significantly changed amyA genes. The number of the probes detected from eCO2 and aCO2 were presented following the bars in parentheses. The Selleckchem ZD1839 statistical significant results of response ratio were shown in front of the GenBank accession number of the probes (**p < 0.05, *p < 0.10). Additionally, the abundance of key genes involved in the degradation of more complex C showed significantly increasing trends at eCO2, such as hemicellulose at p < 0.05 and cellulose at p < 0.1 level. For hemicellulose degradation, three gene families such as arabinofuranosidase (AFase, EC 3.2.1.55), cellobiase (EC 3.2.1.4) and xylanase (EC 3.2.1.8) were detected and the abundance of normalized signal intensity of AFase genes increased significantly (p < 0.05) in the normalized signal intensity under eCO2. The abundance of nine detected endoglucanase genes showed increases at p < 0.1 level under eCO2. Details regarding gene variants and dominant populations of endoglucanase (Additional file 8) and AFase (Additional file 9) genes are described in Additional file 5.