Brief

Bioinform 2009, 10: 315–329 CrossRefPubMed 2 Liao

Brief

Bioinform 2009, 10: 315–329.CrossRefPubMed 2. Liao JG, Chin KV: Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics 2007, 23: 1945–1951.CrossRefPubMed 3. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature LY2090314 chemical structure 2000, 403: 503–511.CrossRefPubMed 4. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB, Hanash S: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med

2002, 8: 816–824.PubMed 5. Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of metastasis in primary solid tumors. Nat Genet 2003, 33: 49–54.CrossRefPubMed 6. Chen PC, Huang SY, Chen WJ, Hsiao CK: A new regularized least squares support vector regression for gene selection. BMC Bioinformatics 2009, 10: 44.CrossRefPubMed 7. Statnikov A, Wang L, Aliferis CF: A comprehensive Androgen Receptor Antagonist purchase comparison of random forests and support Bupivacaine vector machines for microarray-based cancer classification. BMC Bioinformatics 2008, 9: 319.CrossRefPubMed 8. Boulesteix AL, Porzelius C, Daumer M: Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value. Bioinformatics

2008, 24: 1698–1706.CrossRefPubMed 9. Baker SG, Kramer BS: Identifying genes that contribute most to good classification in Pim inhibitor microarrays. BMC Bioinformatics 2006, 7: 407.CrossRefPubMed 10. Liu Z, Tan M, Jiang F: Regularized F-measure maximization for feature selection and classification. J Biomed Biotechnol 2009, 2009: 617946.PubMed 11. Lee YJ, Chang CC, Chao CH: Incremental forward feature selection with application to microarray gene expression data. J Biopharm Stat 2008, 18: 827–840.CrossRefPubMed 12. Chen Z, Li J, Wei L: A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Artif Intell Med 2007, 41: 161–175.CrossRefPubMed 13. Yousef M, Jung S, Showe LC, Showe MK: Recursive cluster elimination (RCE) for classification and feature selection from gene expression data. BMC Bioinformatics 2007, 8: 144.CrossRefPubMed 14. Wu W, Xing EP, Myers C, Mian IS, Bissell MJ: Evaluation of normalization methods for cDNA microarray data by k-NN classification. BMC Bioinformatics 2005, 6: 191.CrossRefPubMed 15. Laderas T, McWeeney S: Consensus framework for exploring microarray data using multiple clustering methods. OMICS 2007, 11: 116–128.

Comments are closed.