(C) 2011 American Institute of Physics. [doi: 10.1063/1.3559871]“
“Composites of phenolic resin of novolac type as matrix, with metal particles of Zn as conducting filler, without or with 15% v/v carbon fibers were manufactured by hot pressing. The porosity ratio, the hardness, the flexural and shear strength, and the electrical conductivity of the composites were determined. The percolation threshold was determined based on two models of electrical conductivity versus the content of metal particles of Zn, namely, an analogous to polymer gelation Selleck NSC23766 model and the other based on the power
law. The composites of carbon fibers combined with Zn particles have higher electrical conductivity than the corresponding without carbon fibers and high strength, lower than that of the composite reinforced with carbon fibers without Zn particles, but still acceptable. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 1890-1900, 2011″
“Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify
the key cis-regulatory elements that determine disparate patterns of gene expression. The find more detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+) homeostasis GDC 0032 in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria,
regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs) using a machine learning method inspired by the “”Divide & Conquer” strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators.