interrogans Fiocruz L1-130 (L1-130), L biflexa wild-type strain

interrogans Fiocruz L1-130 (L1-130), L. biflexa wild-type strain (Patoc wt), and ligA- (Patoc ligA), and ligB- (Patoc ligB) L. biflexa transformants. Bacteria were inoculated in the upper chamber of MDCK cell monolayer transwell chambers. Translocating bacteria was quantified

by counting bacteria in the lower chamber. Assays were performed at 30, 120, and 240 minutes (min) after addition of bacteria. The assays were performed in triplicate, and results are expressed as mean ± SD. The findings of a representative experiment, among three which were performed, are shown. Enhanced adhesion to fibronectin and laminin by lig-transformed L. biflexa Lig recombinant proteins have been shown to recognize in vitro host extracellular matrix proteins [13, 14]. The introduction of the ligA or ligB gene from pathogenic L. interrogans into the nonpathogenic saprophyte L. biflexa enhanced SHP099 solubility dmso Selleck Ro-3306 the adhesion of the Tucidinostat in vivo latter to the mammalian host protein fibronectin (Figure 5A). The lig transformants bound to both plasma and cellular fibronectin approximately two-fold better than the Patoc wild-type strain (2.0-fold average for 1.7- to 2.3-fold range in four independent determinations for the ligA cells; 2.2-fold average from 1.5- to 3.1-fold in five measurements with ligB). The wild-type cells showed non-Lig-mediated

adherence to fibronectin, which may reflect the ability of the saprophyte to interact with related proteins in decaying material that it encounters in the environment. Transformation with the lig genes also increased laminin binding 1.2-fold in comparison to the Patoc wild-type strain (Figure 5B). However, the ligA or ligB cells did not appear to bind elastin better than wild-type cells, and all three strains interacted weakly with type I and type IV collagen (Figure 5B). Figure 5 Binding of L. biflexa

transformants Tangeritin to extracellular matrix components. A. Fibronectin binding assay was performed with L. biflexa wild-type strain (wt), and ligA- (+ligA), and ligB- (+ligB) transformed L. biflexa. The means and standard deviations of triplicates from a representative of more than three independent experiments are shown, with statistical significance at P < 0.01 (*). B. Laminin, elastin, and collagen type I (Col I) and type IV (Col IV) binding was measured as in A. with P < 0.05 (#). Discussion The lack of genetic tools has hampered molecular analyses of putative virulence factors in pathogenic Leptospira spp. In this work, we showed for the first time that pathogen-specific proteins can be expressed in a saprophytic Leptospira and that expression of such proteins are accompanied by an in vitro virulence associated phenotype. The approach used in this study demonstrates that the fast-growing non pathogenic species L. biflexa serves a model for examining pathogenetic mechanisms of L. interrogans. In contrast to L. biflexa, data obtained when E.

Comments are closed.