The production of miRNAs is believed to be dependent upon the DIC

The production of miRNAs is believed to be dependent upon the DICER enzyme. Available evidence suggests that in T lymphocytes, HIV-1 can

both suppress and co-opt the host’s miRNA pathway for its own benefit. In this study, we examined the state of miRNA production in monocytes and macrophages as well as the consequences of viral infection upon the production of miRNA. Monocytes in general express low amounts of miRNA-related proteins, and DICER in particular could not be detected until after monocytes were differentiated into macrophages. In the case where HIV-1 was present prior to differentiation, the expression of DICER was suppressed. MicroRNA chip results for RNA isolated from transfected and treated cells indicated that a drop in miRNA production coincided with DICER protein suppression in macrophages. We found that the expression of DICER in monocytes is restricted by miR-106a, but HIV-1 suppressed click here DICER expression via the viral gene Vpr. Additionally, analysis of miRNA expression in monocytes and macrophages revealed evidence that some miRNAs can be processed by both DICER and PIWIL4. Results presented here have implications for both the pathology of viral infections

in macrophages and the biogenesis of miRNAs. First, HIV-1 suppresses the expression and function of DICER in macrophages via a previously unknown mechanism. Second, the presence of miRNAs in monocytes lacking DICER Tipifarnib research buy indicates that some miRNAs can be generated by proteins other than DICER.”
“During exploratory behaviors, the velocity of an organism’s sensory surfaces can have a pronounced effect on the

incoming flow of sensory information. In this study, we quantified variability in the velocity profiles of rat whisking during natural exploratory behavior that included head rotations. A wide continuum of profiles was observed, including Nutlin-3 monotonic, delayed, and reversing velocities during protractions and retractions. Three alternative hypotheses for the function of the variable velocity profiles were tested: 1) that they produce bilateral asymmetry specifically correlated with rotational head velocity, 2) that they serve to generate bilaterally asymmetric and/or asynchronous whisker movements independent of head velocity, and 3) that the different profiles-despite increasing variability in instantaneous velocity-reduce variability in the average whisking velocity. Our results favor the third hypothesis and do not support the first two. Specifically, the velocity variability within a whisk can be observed as a shift in the phase of the maximum velocity. We discuss the implications of these results for the control of whisker motion, horizontal object localization, and processing in the thalamus and cortex of the rat vibrissal system.

Comments are closed.