First, we determined the effects of N-6-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas
the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly 8-Bromo-cAMP molecular weight this website suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 mu M) and CPDX (50 mu M) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed
and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep. Published by Elsevier Ltd on behalf of IBRO.”
“Recent findings
have attested the protective effects of erythropoietin (EPO) in ischemically challenged organs. We therefore aimed at elaborating the underlying mechanism HKI-272 concentration of EPO-mediated protection in musculocutaneous tissue undergoing persistent ischemia after acute injury. Mice were assigned to five experimental groups equipped with a randomly perfused flap fixed in a dorsal skinfold chamber, whereas the sixth group did not undergo flap preparation: EPO, L-Name, EPO and L-Name, EPO and bevacizumab, untreated flap, and nonischemic chamber (control). Intravital fluorescence microscopic analysis of microhemodynamics, apoptotic cell death, macromolecular leakage and angiogenesis was carried out over a 10-day period. Further, immunohistochemical analysis was used to study the protein expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF). Increased expression of eNOS in EPO-administered mice correlated with significant arteriolar dilation and thus increased blood flow resulting in a maintained functional capillary density (FCD) at day 10. In addition, EPO induced a VEGF upregulation, which was associated with newly formed capillaries. In addition, EPO was able to reduce ischemia-induced apoptotic cell death and finally to significantly reduce flap necrosis.