It has been shown that the mRNAs of these two proteins are widely expressed but at different levels in several normal and neoplasic human tissues [5, 16]. SIAH-1 mRNA
was found highly expressed in placenta, skeletal muscle and testis and also in some cell lines, however, there is a paucity of data concerning endogenous SIAH-1 protein expression in human cells and tissues [17]. Our previous observations led us to propose that SIAH-1 could have a role in tumor suppression and apoptosis [5, 17, 18]. In fact, the murine SIAH-1 was identified as a p53 inducible gene, which is up-regulated during the physiological program OSI-906 manufacturer of cell death [19]. The human SIAH-1 is activated during tumor suppression and apoptosis, notably during physiological apoptosis occurring in the intestinal epithelium [17]. We also reported that over-expression of SIAH-1 in the epithelial breast FK228 cancer cell line MCF-7 blocked cellular growth by altering the
mitotic process, predominantly during nuclei separation and cytokinesis, leading to multinucleated giant cell formation and tubulin spindle disorganization [17]. E7080 nmr In order to elucidate the role of SIAH-1 in the cell and the mechanisms by which SIAH-1 interferes with the mitotic process, we previously searched for SIAH-1-interacting proteins using the yeast two-hybrid system [3]. Amongst other proteins, ID-8 we identified Kid (KIF22), a chromosome and microtubule binding-protein implicated in chromosomal positioning and segregation during cell division [20, 21]. We showed a clear regulatory link between both proteins since SIAH-1 was involved in the degradation of Kid/KIF22 via the ubiquitin proteasome pathway [3]. Further evidence implicating SIAH-1 in tumor suppression was shown to be related to its role in the regulation
of β-catenin [22] and hypoxia-inducible factor 1α (Hif-1α) [23, 24]. Despite these efforts, the role of SIAH-1 as a tumor suppressor remains controversial since many efforts to identify putative mutations associated with tumoral processes have been almost unsuccessful. Medhioub et al. [25] searched for somatic mutations in different human tumors and Matsuo et al. [26] analyzed human hepatocellular carcinomas (HCCs); both authors failed to detect any somatic mutations in SIAH-1. In recent works, Kim et al. [27] found two missense mutations in the SIAH-1 gene in gastric cancer and Brauckhoff et al. [28] observed a reduced expression of SIAH-1 in HCCs. Therefore, these few studies undertaken to establish a correlation between changes either in the sequence or expression of SIAH-1 with tumoral processes have been inconclusive. This study has attempted to further our understanding by analyzing mRNA and protein expression of SIAH-1 and it’s substrate Kid/KIF22, in both normal and tumor tissues.