pestis whole-genome cDNA microarray as described previously [12]

pestis whole-genome cDNA microarray as described previously [12]. Briefly, RNA samples were isolated Pexidartinib datasheet from four individual bacterial cultures, as biological replicates, for each strain. Total cellular RNA was isolated and then used to synthesize cDNA in the presence of aminoallyl-dUTP, genome directed primers (GDPs) and random hexamer primers [16]. The aminoallyl modified cDNA was then labelled with Cy5 or Cy3 dye. Microarray slides spotted in duplicate with 4005 PCR amplicons, representing about 95% of the non-redundant annotated genes of Y. pestis CO92 [17] and 91001 [18], were used for probe

hybridization. The dual-fluorescently (Cy3 or Cy5 dye) labeled cDNA probes, for which the incorporated dye was reversed, were synthesized from the RNA samples

of the four biological replicates, and then hybridized to four separated microarray slides, respectively. The scanning images were processed Alisertib chemical structure and the data was further analyzed by using GenePix Pro 4.1 software (Axon Instruments) combined with Microsoft Excel software. The normalized log2 ratio of the Δzur/WT signal for each spot was recorded. The averaged log2 ratio for each gene was finally calculated. Significant changes of gene expression were identified through the Significance Analysis of Microarrays (SAM) software (a Delta value of 1.397 and an estimated False Discovery Rate of 0%) [19]. Computational analysis of Zur binding sites The 500 bp promoter regions upstream the start codon of each Zur-dependent genes as revealed by cDNA microarray was retrieved with the ‘retrieve-seq’ program [20]. A position count matrix was built from the predicted Zur binding sites

in γ-Proteobacteria by using the matrices-consensus tool [20], and displayed by the WebLogo program to generate a sequence logo [21]. Following this, the matrices-paster tool [20] was used to match the Zur position count matrix within the above promoter regions. Real-time RT-PCR Gene-specific primers were designed to produce a 150 to 200 bp amplicon for each gene (see Additional file 2 for primer sequences). The contaminated DNA in RNA samples was further removed by using the Amibion’s DNA-free™ Akt inhibitor Kit. cDNAs were generated by using 5 μg of RNA and 3 μg of random hexamer primers. Using three independent cultures and RNA preparations, real-time RT-PCR was performed in triplicate as described previously through the LightCycler system (Roche) together with the SYBR Green master mix [22, 23]. On the basis of the standard curves of 16S rRNA expression, the relative mRNA level was determined by calculating the threshold cycle (ΔCt) of each gene by the classic ΔCt method. Negative controls were performed by using ‘cDNA’ generated without reverse transcriptase as templates. Reactions containing primer pairs without template were also included as blank controls. The 16S rRNA gene was used as an internal control to normalize all the other genes.

Comments are closed.