The affinity for CO2 may thus be related to its ecological niche,

The affinity for CO2 may thus be related to its ecological niche, which may have lead to adaptation and eventually dependency on high CO2 concentrations. Hp shows chemotactic responses towards high CO2 concentration in vitro [68]. Elevated levels of

CO2/bicarbonate serve as a signal of the host environment and often increase the expression of diverse virulence factors [69, 70]; however, the association between CO2 and virulence in Hp remains to be determined. Conclusions In this manuscript, we showed that H. pylori may be a capnophilic aerobe whose growth is promoted by atmospheric oxygen levels in the presence of 10% CO2. Our data also suggest that buffering of intracellular pH alone cannot account for the CO2 requirement of H. pylori and that CO2 deprivation initiates the stringent response in H. pylori. Our findings KU55933 datasheet may provide new insight into the true physiology of this fastidious human pathogen and Neuronal Signaling contribute to understanding of its pathogenic mechanism(s). Acknowledgements The authors are grateful to Dr. A. van Vliet of Erasmus MC University,

the Netherlands and Dr. Y. H. Choe of Samsung Medical Center, Seoul, Korea for providing H. pylori strains. This study was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare (No. A080323). References 1. Prescott LM, Harley JP, Klein DA: Microbiology. New York: McGraw-Hill; 2002. 2. Dunn BE, Cohen H, Blaser MJ: {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| Helicobacter pylori. Clin Microbiol Rev 1997, 10:720–741.PubMed 3. Kusters JG, van Vliet AH, Kuipers EJ: Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 2006, 19:449–490.PubMedCrossRef 4. Chalk PA, Roberts AD, Blows WM: Metabolism of pyruvate and glucose by intact cells of Helicobacter pylori studied by 13C NMR spectroscopy. Microbiology 1994, ifoxetine 140:2085–2092.PubMedCrossRef 5. Mendz GL, Hazell SL: Evidence for a pentose phosphate pathway in Helicobacter pylori . Helicobacter 1991, 2:1–12. 6. Mendz GL, Hazell SL: Glucose phosphorylation in Helicobacter pylori . Arch Biochem Biophys 1993, 300:522–525.PubMedCrossRef 7. Mendz GL, Hazell SL, Burns BP: Glucose utilization and lactate production by Helicobacter

pylori . J Gen Microbiol 1993, 139:3023–3028.PubMed 8. Mendz GL, Hazell SL, Burns BP: The Entner-Doudoroff pathway in Helicobacter pylori . Arch Biochem Biophys 1994, 312:349–356.PubMedCrossRef 9. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC: The complete genome sequence of the gastric pathogen Helicobacter pylori .

Comments are closed.