The authors thank Bertold Kastner
for kindly providing U1snRNP. A. K., D. H., J. L., and W. R. are supported by German Research Foundation grants KR2199/1-4, KR2199/3-1, SFB 455 and SFB 571. This work is part of the thesis of D. H. Conflict of interest: The authors declare no financial or commercial conflict of interest. Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. “
“Intravenous immunoglobulin (IVIg) therapy is widely used to treat a variety of autoimmune diseases including immunothrombocytopenia, Torin 1 clinical trial chronic inflammatory demyelinating polyneuropathy, and more recently autoimmune skin blistering diseases. Despite this well-documented clinical success, the precise molecular and cellular mechanisms underlying this immunomodulatory activity are discussed controversially. In particular, Z-VAD-FMK ic50 the clinically relevant therapeutic pathway of IVIg-mediated immune modulation has not been studied in detail. In the present study, we use four independent in vivo model systems of auto-Ab-mediated autoimmune disease to identify a common pathway explaining IVIg activity under therapeutic conditions in vivo. We show that irrespective of the in vivo model system, IVIg activity is strictly dependent on the presence of terminal sialic acid residues and
the inhibitory FcγRIIB under preventive as well as therapeutic treatment conditions. In contrast, specific ICAM3 grabbing nonintegrin related 1, previously demonstrated to be essential under preventative treatment conditions, showed a disease-specific impact on IVIg-mediated Tyrosine-protein kinase BLK resolution of established autoimmune disease. “
“Studies on the role of regulator of calcineurin 1 (RCAN1) in immunity are limited, but have demonstrated an involvement in T-lymphocyte function. Here, we expand these studies to macrophages and in vivo infection. The treatment of RAW and primary mouse macrophages
with lipopolysaccharide from Escherichia coli strongly induced RCAN1 isoform 4 (RCAN1-4), but not isoform 1. RCAN1-4 induction involved calcium, calcineurin, and reactive oxygen species. Subsequent analysis with whole bacteria including gram-negative E. coli and gram-positive Staphylococcus aureus revealed strong RCAN1-4 inductions by both, and where tested, dependence on calcium. Staphylococcus aureus cell wall components peptidoglycan and lipoteichoic acid also strongly induced RCAN1-4. In vivo, a significant induction in the proinflammatory cytokines monocyte chemotactic protein-1, interleukin-6, interferon-γ, and tumor necrosis factor-α was observed in knockout (KO) lung vs. wild-type (WT) mice 7 days after nasal infection with Fransicella tularensis. This induction was not accompanied by a significant increase in F. tularensis burden in the KO lung. Additionally, a modest increase in respiratory burst activity in KO vs. WT macrophages was observed.